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Received 30 March 1982 

Abstract. The combined electrostriction and magnetostriction Casimir force on a compact 
sphere placed in a vacuum is calculated, provided that the medium satisfies the relationship 
E& = 1, E being the permittivity and the permeability. Thisspecial class of media is known 
to possess attractive properties (Brevik and Kolbenstvedt 1982a, b): cut-off terms that 
otherwise represent a difficulty in Casimir calculations for ordinary non-magnetic media 
(Milton 1980, Brevik 1982a) simply cancel out in the surface force expression. This note 
examines the question whether similar cancellations occur in the striction force when the 
magnetostriction part is included. The answer is negative. 

The current interest in calculations of the Casimir effect for spherical geometry is 
motivated by its importance for electrodynamics as well as for quantum chromo- 
dynamics. Whereas the idea of picturing the semiclassical electron as a conducting shell 
stabilised by the zero-point fluctuations is due to Casimir (1956), it was only after the 
advent of specific calculations by Boyer (1968), Balian and Duplantier (1978), Milton et 
a1 (1978) and others that it became clear that the surface force is acting outwards, 
contrary to Caeimir’s original suggestion. Milton et a1 (1978) calculated the surface 
force density to great accuracy: 

Fo = 0.09235/(8.rra4), (1) 

a being the radius. The remarkable property here is that terms containing the 
(temporal) cut-off parameter cancel out. 

One interesting generalisation of the semiclassical electron model is to consider a 
dielectric compact sphere instead of a thin conducting shell. This case was first worked 
out by Milton (1980) for non-magnetic media. The result was that cut-off terms were 
remaining even after the subtraction of suitable ‘contact’ terms. The present author 
went one step further and considered the electrostrictive contribution to the Casimir 
force on the sphere, still assuming a non-magnetic medium (Brevik 1982a). The 
motivation for this undertaking was the great importance of the electrostriction effect in 
general for the distribution of hydrostatic pressure in a fluid in classical electromag- 
netism (cf, for instance, Brevik 1982b, 1979). Similarly as in Milton’s case, cut-off 
terms were found to survive, thus indicating that the underlying physical model is 
incomplete in some way. 

It is rather remarkable that these cut-off problems go away if the medium is 
permitted to possess, apart from a permittivity E ,  also a permeability p, such that the 
relationship 

&p = 1 (2) 
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is satisfied. In this case, similar cut-off cancellations occur as in the standard case of a 
conducting shell. If the compact sphere is surrounded by a vacuum, the Casimir surface 
force density on it is (Brevik and Kolbenstvedt 1982b; a brief note in 1982a) 

(where we have used the symbol Fsurf instead of F to distinguish it from the striction 
force). The condition (2) is formally exactly the condition made in OCD to ensure that 
the gluons propagate with the velocity of light. 

The question to which we address ourselves here is the following: is the cut-off 
independence in the force a property that is shared also by the striction force, if we allow 
for a magnetostrictive as well as an electrostrictive contribution, and assume a medium 
such that (2) holds? From the outset it might appear as a realistic possibility that an 
equivalent treatment of the electric and magnetic fields, which is implied by (2), would 
be sufficient to establish the nice cut-off independence property for the striction force 
also. 

The result of the explicit calculation below is that the cut-off terms do not go away. 
There is, however, one advantage in handling the electrostrictive and magnetostrictive 
contributions at the same time: the contact term, that is to be subtracted off in the 
formalism in order to obtain the physical force, becomes equal to zero. 

The calculation is conveniently carried out using Green function methods. We may 
start from the expression for the electromagnetic force density in isotropic matter (cf, 
for instance, Landau and Lifshitz 1960), 

f = -$E’VE -$H2Vp +V[+E’p d~/dp]+V[$H’p dp/dp], (4) 

in which the two first terms are non-vanishing only in the boundary layer at the surface, 
and are responsible for the surface force density given in (3) when (2) is valid. Of 
interest for us are the two striction terms in (4). Here p is the matter density (the 
expression applies strictly speaking to an isotropic fluid), and we adopt a non-polar 
model of the medium so that E and p become temperature independent. In virtue of (2) 
we write the striction force density, i.e. the sum of the electrostriction and magneto- 
striction terms, as 

fst, = V[$(E’ - B’)p d ~ l d p ] .  ( 5 )  

This expression in general is different from zero both in the interior of the sphere 
(because of the varying fields) and in the boundary region at the surface where E 

changes abruptly with position. 
To find the action from ( 5 )  on the sphere we integrate, as in Brevik (1982a), the 

radial component over a narrow sector of the sphere covering a solid angle element dR. 
The result is written as a2dRFStrr so that F,,, has the dimension of a surface force 
density. By means of a partial integration over r we obtain 

Now adopting the Clausius-Mossotti relation in the evaluation of dE/dp, and inserting 
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the effective product of two electric or two magnetic fields from Brevik and Kolbenst- 
vedt (1982b), we obtain 

m ( p - l ) ( 2 p + l )  f 21+1 Joa ( 2 1(1+1) 
r d r  o --1 

3ipa2 J-m % l = 1  47r r Fstr = 

[FI(r, I ’ )  - Gdr, r’)] I . 
r - r ’  

(7) 

Here 7 = t - t’ measures the temporal separation of the two space-time points x and x‘.  
S and GI are the scalar Green functions (k = 101): 

(8 )  4, GI = ikjdkr,)[hj”(kr,) - A ~ . ~ j l ( k r , ) l ,  
where (z = ka) 

SI = zjl and er = zhj” being the Riccati-Bessel functions. Now defining y = oa, z = ly 1, 
S = ~ / a ,  we may after some algebra write (7) in the form 

This is our general result. 
One important observation can be made at this stage: we do not have to subtract off 

a contact term in order to obtain the physical force. The contact term is constructed 
solely from one scalar Green function, 

F, = GI =Fie' = ikj&r<)hj’)(kr,), (13) 
and since from (7) it is clear that only the difference between FI and GI appears, the 
contact term must be expected to give the physical force directly, as following from our 
model. 

To evaluate the two integrals and the sum in (12) in the general case would be quite 
difficult. Some simplification is achieved if we restrict ourselves to the case of a dilute 
medium, i.e. Ip - 1 1 ~  1. We then obtain to first order in (p - l) ,  employing the 
Wronskian W{sI, el} = i (in conventional normalisation), Old, -* p. Thus (12) yields, to 
lowest order, 

where we recover in front the proportionality to the square of the susceptibility which is 
so typical for dilute media. 

There is still a difficulty here in calculating the integral over 4 for arbitrary z. (For 
large values of I it would be easy to calculate this integral to a good approximation: by 
means of two partial integrations we might write the integral as terms containing s I ( z )  



L372 Letter to the Editor 

plus a remainder integral which is of the Weber-Shafheitlin type if the upper limit (z)  is 
replaceable by infinity.) Our main interest here is not however the explicit calculation 
of (14) but rather to answer the following question: is the expression independent of 
cut-off, and finite? In fact, it is not. It is cut-off divergent even for the lowest mode 
separately, I = 1. It is relatively easy to show this, making use of (Abramowitz and 
Stegun 1964) 

(15) sl(z) = z-lsin z -cos z ,  e l ( z )  = -(I +iz-’) eiz, 

We obtain 

Performing now a complex frequency rotation (cf, for instance, Milton et a1 1978) 

o -P ik4, k -* ilk41, 7 -+ h4 ,  (17) 

we are in the evaluation of the y integral in (14) confronted with a number of 
exponential integrals and cosine integrals that can be calculated separately making the 
same effective substitutions as in equations (5.8)-(5.11) in Brevik (1982a). The final 
result for the I = 1 contribution becomes 

where S(S) means the delta function of S. 
The I = 1 contribution to the striction force is thus cut-off divergent. The full 

striction force, obtained by summing over all 1, will also have to be divergent. Thus the 
behaviour is in this respect analogous to that found for a non-magnetic medium. The 
remaining finite terms in (18) yield a repulsive contribution. It ought to be observed, 
however, that we cannot draw any conclusion as to the repulsiveness of the full force 
when summed over all I ;  the sign may change during the summation. The striction force 
is a result of an integration over r out to r = a, and so we must expect that the higher 
modes may be important. (What makes the 1 = 1 contribution so important in describ- 
ing gluon and quark condensates in QCD, is that the field values near the centre of the 
bag seem to be so typical; see Milton (198 l).) 

Our main conclusion thus becomes the following. The nice cut-off independence 
property shown by the ordinary surface force (the force corresponding to the two first 
terms in (4)) is not shared by the striction force. This indicates that as far as the 
semiclassical electron model, or the bag QCD model, are concerned, the surface force is 
of greater fundamental importance than the striction force. It is however worth 
noticing that when the electrostriction and magnetostriction forces are combined, there 
is no longer any need for subtracting off contact terms. 
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